Preview

Key Issues of Contemporary Linguistics

Advanced search

Anthropomorphic metaphors as a mechanism for humanizing artificial intelligence in generative texts

https://doi.org/10.18384/2949-5075-2025-4-54-61

Abstract

Aim. This article explores linguistic epistemology in the context of text generation by neural network models based on artificial intelligence.
Methodology. The study analyzes the artificial text of the project “Autobiography of a Neural Network” (2023) using content analysis and a linguo-cognitive approach involving quantitative metaphor analysis and conceptual schema modeling.
Results. The research shows that the linguistic epistemology of generation is defined by a principle that combines the functions of a neural network algorithm with the cognitive settings of the subject. Conceptual metaphors of cognitive functions “humanize” the generative agent, allowing it to imitate cognitive processes and create new forms of knowledge representation based on the analysis of training texts.
Research implications. Generated texts construct a simulation of epistemic processes through systematic metaphors and anthropomorphization strategies. The research findings can be applied to AI interface design and UX enhancement, critical discourse analysis of manipulation strategies in text generation processes.

About the Author

S. V. Ostapenko
Altai State University
Russian Federation

Svetlana V. Ostapenko (Barnaul) – External Postgraduate Student, Department of Media Communications, Advertising Technologies and Public Relations



References

1. Ischenko, E. N. (2023). Transformation of Humanitarian Knowledge in Digital Space: Algorithmisation vs Understanding. In: Proceedings of Voronezh State University. Series: Law, 1 (52), 290–294. DOI: 10.17308/law/1995-5502/2023/1/290-294 (in Russ.).

2. Zakharov, M. Yu., Starovoytova, I. E. & Shishkova, A. V. (2020). Digital culture – a historical stage in the development of the information culture of society. In: Vestnik Universiteta, 5, 200–205. DOI: 10.26425/1816-4277-2020-5-200-205 (in Russ.).

3. Meshkova, L. N. (2020). Digital technologies as a factor of culture transformation. In: Bulletin of Buryat State University, 3, 53‒60. DOI: 10.18101/1994-0866-2020-3-53-60 (in Russ.).

4. Teslev, A. A. (2019). Epistemic interface in the discourse of new media culture. In: The Digital Scholar: Philosopher’s Lab, 2 (1), 100–111. DOI: 10.5840/dspl20192112 (in Russ.).

5. Chomsky, N. (1962). Syntactic Structures. In: New in Linguistics. Iss. II. Moscow: Izdatelstvo inostrannoy literatury publ., pp. 412–527 (in Russ.).

6. Lakoff, G. & Johnson, M. (2003). Metaphors We Live By. Chicago: The University of Chicago Press.

7. Nurgaleeva, L. V. (2015). Interactive epistemology: modern research guidelines. Barnaul: “Si-press” publ. (in Russ.).

8. Alekseeva, E. A. (2023). Computational epistemology projects. In: Philosophy of Science and Technology, 28 (2), 88–101. DOI: 10.21146/2413-9084-2023-28-2-88-101 (in Russ.).

9. Mironova, N. G. (2024). Problems of bias and opacity of neural network models. In: Kiselev, A. A., Kugai, A. I. & Avkhodiev, G. I. et al. Contemporary issues of pedagogy and psychology: theoretical and methodological approaches and practical results of research. Cheboksary: Sreda publ., pp. 114–130. DOI: 10.31483/r-109589 (in Russ.).

10. Cherkasova, M. N. & Taktarova, A. V. (2024). Artificially generated academic text (а linguopragmatic aspect). In: Philology. Theory & Practice, 17 (7), 2551–2557. DOI: 10.30853/phil20240363 (in Russ.).

11. Plotnikova, A. M. (2023). Neyroset’ as a Keyword of the Current Moment. In: Philological Class, 28 (2), 45–54 (in Russ.).


Review

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5059 (Print)
ISSN 2949-5075 (Online)