Preview

Key Issues of Contemporary Linguistics

Advanced search

SUBJECTIVITY VS. OBJECTIVITY DICHOTOMY AND SENTIMENT RELEVANCE IN SENTIMENT ANALYSIS TASKS

https://doi.org/10.18384/2310-712X-2018-1-38-45

Abstract

The paper describes the meaning of terms “subjectivity”, “objectivity” and “sentiment relevance” and the scope of their application in opinion mining systems. The author traces the formation of the term “sentiment relevance” and the polysemantic usage within the given scientific framework. The author analyzed a movie review corpora with sentences marked as relevant or non-relevant and news articles corpora with marked relations between entities. Moreover, an experiment on automatic extraction of relevant pairs of entities and the polarity of the relations was conducted. The analysis supported change from subjectivity vs. objectivity dichotomy to sentiment relevance.

About the Author

Tatiana Semina
Moscow Region State University
Russian Federation


References

1. Алексеев А.А., Лукашевич Н.В. Автоматическое извлечение сущностей на основе структуры новостного кластера // Искусственный интеллект и принятие решений. 2011. № 4. С. 95-103.

2. Лукашевич Н.В., Левчик А.В. Создание лексикона оценочных слов русского языка РуСентиЛекс // Открытые семантические технологии проектирования интеллектуальных систем (OSTIS-2016): материалы VI Международной научно-технической конференции / отв. ред. В.В. Голенков. Минск: Белорусский государственный университет информатики и радиоэлектроники, 2016. С. 377-382.

3. Марчук Ю.Н. Автоматизация перевода и типология текстов // Вестник Московского государственного областного университета. Серия: Лингвистика. 2016. № 2. С. 164-171.

4. Пазельская А.Г., Соловьев А.Н. Метод определения эмоций в текстах на русском языке // Компьютерная лингвистика и интеллектуальные технологии: «Диалог-2011». М., 2011. С. 510-522.

5. Deng L., Wiebe J. Joint Prediction for Entity/Event-Level Sentiment Analysis using Probabilistic Soft Logic Models // Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, 2015. P. 179-189.

6. Deng L., Wiebe J. MPQA 3.0: An Entity/Event-Level Sentiment Corpus // Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL. Denver, 2015. P. 1323-1328.

7. Greene S., Resnik P. More than Words: Syntactic Packaging and Implicit Sentiment // Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL. Boulder, 2009. P. 503-511.

8. Pang B., Lee L. Opinion Mining and Sentiment Analysis // Foundations and Trends in Information Retrieval. 2008. № 2. P. 1-135.

9. Scheible С., Schutze H. Sentiment Relevance // Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, 2013. P. 954-963.

10. Shin H., Kim M., Jo Y. и др. Annotation Scheme for Constructing Sentiment Corpus in Korean // 26th Pacific Asia Conference on Language, Information and Computation pages. Bali, 2012. P. 181-190.


Review

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5059 (Print)
ISSN 2949-5075 (Online)